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Abstract

This study provides a comprehensive analysis of the effects of High-frequency Trading

(HFT) on expected returns of Treasury bonds. We document a strong and positive

relationship between bond expected returns and a factor capturing the intensity at

which HFT takes place in the market. We find that investing in bonds with the largest

exposure to the HFT intensity factor and shorting those with the smallest generates

large and significant returns. These returns are uncorrelated with conventional risk

factors, are not affected by transaction costs and they are higher during periods when

macroeconomic news shocks are larger than normal.
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1 Introduction

High-frequency Trading (HFT henceforth) refers to the set of activities that employ auto-

mated programs for generating, routing, executing and canceling orders in electronic markets

(Cvitanic and Kirilenko, 2010).1 One of the major features of these activities is that they

are carried out at a very high speed using powerful computers and sophisticated algorithms

(Clark, 2011; Moallemi and Saglam, 201; Hasbrouck, 2012; Scholtus and Van Djik, 2012;

Scholtus et al., 2012 and the references therein). HFT has been defined as one of the most

significant market structure developments in recent years (SEC, 2010) and it has become

object of increased scrutiny especially in the aftermath of the ‘flash crash’that affected the

US equity market on May 6th, 2010 (Kirilenko et al. 2011; Easley et al. 2011; 2012) and

similar events that occurred thereafter in various security markets around the world (e.g,

the collapse of Knight Capital Partners2 and the large losses faced by Everbright Securities

in China3). Those events have shown that the obvious advantages of HFT, in terms of quick

reactions to new information and reduction of monitoring and execution costs, can be com-

promised by non-negligible negative effects on market liquidity and, to a larger extent, price

volatility.

The growing theoretical and empirical literature on HFT widely recognizes that trading

at a very high speed can entail both benefits and, most importantly, risks.4 More specifically

these risks are related to the fact that automated traders may employ strategies that can

1HFT is generally regarded as a subset of a larger class of activities. This latter set, defined as algorithmic

trading, mostly focuses on the intelligent working of orders to minimize market impact relative to a pre-

defined benchmark (Chlistalla, 2011; Gomber et al., 2012). Since the main aim of this study is to investigate

the impact of trading activity that is carried out at a very high speed on asset prices, we will only refer to

the HFT group of activites throughout the text.
2See “Knight $440 Million Loss Sealed by Rules on Canceling Trades”, Bloomberg, August 15th, 2012.
3See, “China Watchdog Embraces Risk After Everbright Fat Finger,”Bloomberg, September 30th, 2013.
4An non-exhaustive list of recent studies that have investigated the impact of HFT on the overall quality

of equity, FX and fixed income markets includes Hendershott et al. (2010), Hasbrouck and Saar (2011),

Brogaard (2011a; 2011b; 2012), Hendershott and Riordan (2011), Egginton et al. (2012), Bohmer et al.

(2012), Chaboud et al. (2009) and Jiang et al.(2013) and the references therein..
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potentially overload exchanges with trade-messaging activity (Egginton et al., 2012), use

their technological advantage to position themselves in front of incoming order flow, hence

making more diffi cult to transact at posted prices; and withdraw their participation from

the markets during periods of turbulence or when market making is diffi cult (Bohemer et al.,

2012).5 Combined together, these aspects suggest that higher-than-expected HFT is likely

to generate systematic market disruptions and, as a consequence, increase systematic risk

(Barker and Pomeranets, 2011; Biais and Wooley, 2012). Recent attempts to incorporate

HFT into theoretical models of trading in financial markets have generated important in-

sights into the interaction among different types of market participants (e.g. slow and fast

traders) and its impact on asset prices. Kirilenko et al. (2011) and Biais et al. (2013) em-

phasize that HFT enables fast traders to process information before other traders and this

competitive advantage is likely to impose adverse selection on slow traders6 and generate

profits at their expenses. These findings are corroborated by the empirical evidence in Baron

et al. (2012) who suggest that most of the profits from HFT are generated from the inter-

action with fundamental traders, small and other traders who are unlikely to access (or use)

strategies that are carried out at a very high speed.7 A similar conclusion on the potentially

dysfunctional role of HFT in financial markets is highlighted by Jarrow and Protter (2011).

They show that fast players, contrary to conventional arbitrageurs, can create with their

trades increased volatility and mispricing (deviations from fundamental values) that they

exploit to their advantage.8

5Various studies commissioned by the UK Treasury under the Foresight Project emphasize increased

concerns by institutional investors that HFT exacerbates market manipulation. See UK Government Offi ce

for Science (2012).
6See also Focault et al. (2012) for a theoretical analysis of news trading and speed.
7The fact that some market participants may systematically lose out against high frequency traders

is also corroborated by the evidence of strong opposition to HFT direct trading allowance into financial

markets. One example reported in the financial press is represented by the threat of leaving the market

staged by Credit Suisse when MTS, Europe’s premier facilitator for the electronic fixed income trading

market, considered direct market access for hedge funds (See,“Credit Suisse Quits MTS In Protest of Open

Trades”, Wall Street Journal November 26th 2007).
8This theoretical finding is supported by the anecdotal evidence suggesting that some banks in various
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A natural cross-sectional pricing implication arises from these findings: Investors holding

assets that are largely exposed to common HFT strategies are likely to face a higher risk

during high HFT activity in comparison with others holding assets which are not (or less)

exposed to HFT. As a consequence, those investors may require a compensation in term of

higher expected returns. The current price of the assets with greater exposure (or beta) to

HFT risk should be lower (and its expected returns higher) if they experience a low payoff

during periods of unexpectedly high HFT activity (denoting a negative beta to HFT risk).

In this paper we bring this conjecture to the data and provide the first comprehensive

empirical analysis of the effect of HFT on the cross-section of expected returns of US Treasury

bonds. The goal of our paper is to determine whether the intensity at which HFT occurs

in the market is a priced risk factor and, if so, estimate the price of aggregate HFT risk.

We focus on the US Treasury market since it is one of the largest in the world, with a daily

trading volume nearly 5 times that of the US equity market, and because HFT has been

increasing substantially since early 2000s.9

With the help of a large transaction dataset from BrokerTec, which contains tick-by-

tick transactions and order book information for the 2-, 5- and 10-year on-the-run Treasury

securities over the period of January 2003 —December 2011, we compute a HFT intensity

factor. More specifically, as commercially available datasets do not provide information to

identify automatic trading and quoting activities, we follow Jiang et al. (2013) and use

the submission timing of orders and their subsequent alterations to classify high frequency

trades and orders on the basis of the reaction time of order placements to changes in market

markets have actively engaged in questionable trading practices focused on generating mispricing over short

periods of time. For example, the UK Financial Services Authority (FSA) fined Citigroup GBP 13.9 million in

2005 for “executing a trading strategy on the European government bond markets on 2 August 2004 which

involved the firm building up and then rapidly exiting from very substantial long positions in European

government bonds over a period of an hour”(FSA, 2005).
9Some recent anecdotal evidence suggests that BrokerTec, a major electronic communication networks

(ECNs) intermediating bond transactions, experiences more than 50 percent of its bid and offer prices that

are “black-box-oriented”and 45 percent of its overall trading in US Treasuries that is generated by computers

(Kite, 2010).
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conditions deemed to be beyond manual ability. The HFT intensity factor is then calculated

as the average ratio between the number of high frequency trades and orders and the overall

number of trades and orders in a given month across the three benchmark maturities.

We then adopt a portfolio approach to examine the cross-sectional relationship between

Treasury bond expected returns and the exposure to the HFT intensity factor. Consistent

with large literature aiming at explaining the cross-section of equity returns (see, among

others, Fama and French, 2012 and the references therein) and in the spirit of the studies of

the determinants of Treasury bond returns (see, inter alia, Li et al., 2009 and the references

therein), we construct five portfolios of bonds according to their beta to the HFT intensity

factor.10

Using a sample of 416 Treasury bonds and notes over the period January 2003 and

December 2011, we find that investing in Treasury securities with the largest exposure to the

HFT intensity factor and shorting the ones with the lowest provides a US investor significant

excess returns of about 10 percent per annum. In support of our conjecture, we also find

empirically that the securities with the largest exposure to the HFT intensity factor deliver

low returns in times of high HFT activity (i.e. negative beta) while securities with the lowest

exposure exhibit positive returns during the same times. We also find that the returns from

the strategy are not a mere compensation for conventional risks in bond and equity markets

and they are not affected by transaction costs. The performance of the portfolio strategy is

higher during periods when macroeconomic announcement shocks are larger than normal.

A set of robustness checks confirms that the results from the baseline estimates are not

affected by, among others, different portfolio formation and holding periods, the inclusion

of bond specific characteristics in the asset pricing regressions and the use of alternative

estimation procedures to carry out asset pricing tests. Furthermore, in the spirit of Adrian

et al. (2013), we also show that a random noise HFT intensity factor does not spuriously

10In the baseline set of results, we estimate HFT intensity beta using the past 12 month of data and we

rebalance the various portfolio every six months.
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replicate the cross-sectional results reported in this study.

Our study is closely related to Skjeltorp et al. (2013) who investigate the impact of algo-

rithmic trading on the cross-section of equity returns. The two studies share various similar-

ities: First, both studies propose a methodology that infer the intensity of computer trading

activity from publicly available information. Second, conditioning on the level of computer

trading activity generates a large and economically significant return spread. Third, this

return spread is not due to compensation to conventional sources of risk. However, the two

studies differ in a number of significant ways. First, the two studies focus on two very dif-

ferent markets characterized by different institutional structures. Second, we compute our

measure of HFT intensity on the basis of the reaction time of order placements to changes

in market conditions deemed to be beyond manual ability. This allow us to capture the

essence of the very quick pace of HFT activity. Skjeltorp et al. (2013), using a different

rationale, look at the ratio between the number of orders submitted and trades for the same

security to proxy for algorithmic trading activity. Third, we form portfolios on the basis of

the exposure to the HFT intensity factor while Skjeltorp et al. (2013) rank directly stocks

into portfolios on the basis of their estimated measure of algorithmic trading activity. These

important distinctions are likely to be the main drivers of the diverging results reported in

the two papers. In fact, unlike our study, Skjeltorp et al. (2013) record that stocks with

higher computer trading activity have lower expected returns and this result is rationalized

on the basis of an information diffusion hypothesis.

The rest of the paper is set out as follows. Section 2 discusses the construction of the

HFT intensity factor, introduces the bond portfolio strategy and describes the empirical

framework used to carry out asset pricing tests. Section 3 describes the datasets used in

the empirical investigation and presents some key summary statistics. Sections 4 and 5

report the main empirical results and discuss a number of robustness checks. A final section

concludes.
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2 The Empirical Framework

In this section we discuss the empirical framework adopted in this study. More specifically,

we first discuss the procedure for constructing the HFT intensity factor using bond trades and

orders high-frequency data. Then we describe the bond portfolio strategy used to evaluate

the effect of HFT on the cross-section of Treasury bond returns and the asset pricing tests

used to understand the determinants of the returns from the bond strategy.

2.1 The HFT Intensity factor

Comprehensive data on HFT across various financial markets are scarce. In fact, commer-

cially available dataset do not contain information about whether trades or orders are placed

through computers or manually and the few exceptions are limited to some markets and over

very short periods of time. This limitation makes the investigation of the effect of HFT on

asset prices diffi cult. In our study we overcome this problem by exploiting a procedure re-

cently proposed in Jiang et al. (2013), which infers high frequency trades and orders in the

US Treasury secondary market on the basis of the of the reaction time of order placements

to changes in market conditions deemed to be beyond manual ability. In fact, for each of the

Treasury benchmarks, it is possible to access the reference numbers that provide information

on the submission timing of an order and its subsequent alteration, cancellation or execution.

Hence, we are able to identify high frequency trades and orders by focusing on their reaction

time after changes in market conditions.11

Once high frequency trades and orders are identified, we construct the HFT intensity

11More specifically, as in Jiang et al. (2013), we classify high frequency trades as the market buy (sell)

orders that are placed to hit the best ask (bid) quote within a second of the changes of the best quotes.

Similarly, we classify high frequency orders if 1) a limit order is cancelled or modified within one second of

its placement regardless of market condition changes or 2) a limit order at the best quote is modified within

one second of changes in best quotes on either side of the market or 3) a limit buy (sell) order placed at the

second best quote is modified on either side of the market within one second of a change in the best quote

on either side of the market (higher bid or lowest ask). For further details on the identification procedure,

see Jiang et al. (2013) and the references therein.
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factor as the equally weighted-average of the ratios between the total number of high fre-

quency trades and orders and the total number of overall trades and orders (i.e. including

both high-frequency and non-high frequency trades and orders, respectively) as follows:

HFTIt =
1

N

N∑
i=1

(
HFTOit
ALLTOit

)
. (1)

where HFTOit denote the day t number of high frequency trades and orders for the bench-

mark bond i and ALLTOit denote the day t of total number of overall trades and orders for

the same benchmark bond.

The construction of the HFT intensity factor, HFTIt, follows similar HFT measures

proposed in recent studies. For example, Hendershott et al. (2010) use a normalized measure

of electronic message traffi c on NYSE as a proxy for algorithmic-high frequency trading while

Hasbrouck and Saar (2011) construct a measure of low-latency activity based upon “strategic

runs”which are linked to submissions, cancellations and executions of orders. In a similar

fashion, Skjeltorp et al. (2013), compute a proxy for algorithmic trading as the order-to-

trade ratio for each stock reported in the Trade and Quotes database (TAQ). All of these

studies, in line with our approach, infer computer trading and quoting activity from existing

publicly-available high-frequency data, and apply various filters that aim at capturing the

quick reaction of traders to market changes.

In the empirical analysis, we focus on the innovations in the HFT intensity factor (de-

noted as ĤFTI t) that are computed, as in various studies, by taking the residuals from an

autoregressive (AR) model applied to the daily time-series data. We find that an AR(5)

model is able to generate innovations that have zero mean and are serially uncorrelated.12

2.2 Bond Strategy and Portfolio Formation

In this paper we argue that holding assets that are largely exposed to common HFT strategies

generate a higher risk during periods of high HFT activity in comparison with holding assets

12The detailed description of the resulting factor and its innovations are reported in Section 3.
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which are not (or less) exposed to HFT. As a consequence, assets largely exposed to HFT

are likely to command larger expected returns than the one accruing to assets with smaller

exposure to HFT.

We test this conjecture by implementing a bond portfolio strategy as follows: we form five

portfolios based on the exposure (beta) to the HFT intensity factor innovations estimated

using daily data during the past 12 months. We allocate the one fifth of the bond exhibiting

the smallest beta the to the first portfolio, P1, the next fifth to the second portfolio, and

so on until the top fifth of bonds that exhibit the largest beta which we allocate to last

portfolio, P5. We keep the composition of the portfolios constant for six months and then

we rebalance them on the basis of the exposures computed, using again 12 month worth of

daily data, at the end of the sixth month. Once the returns on the various portfolios are

computed, the return difference between P5 and P1 can be understood as the excess return

from a long-short strategy resulting from investing in the portfolio P5 and short-selling the

portfolio P1. If our conjecture finds support in the data, we should be able to obtain a

positive average excess return from P5−P1 which is due to compensation for facing HFT

risk.

2.3 Asset Pricing Tests

In the previous subsection we have suggested that the returns originating from the bond

portfolio strategy should be mostly due exposure to HFT risk. However, it may well be that

the same returns could be due to the mere compensation for facing conventional sources

of risk. Hence, it is natural to assess the risk/return characteristics of our strategy using

cross-sectional asset pricing methods. Assume that excess returns on portfolio i, denoted

by rxit+1, satisfy the Euler equation:

Et
(
rxit+1m

h
t+1

)
= 0. (2)
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If we assume a linear SDF, mh
t+1 = 1 − b′(ft+1 − µh), where ft+1 denotes a vector of risk

factors and µh is a vector of factor means, the combination of the linear SDF and the Euler

equation (2) leads to the conventional beta representation for excess returns on each portfolio

i :

E(rxi) = λ′βi.

We estimate the parameters of equation (2) using the traditional two-pass Fama-MacBeth

(FMB) approach (Fama and MacBeth, 1973). We also use the Generalized Methods of

Moments (GMM) of Hansen (1982). More specifically, we use a two-step approach, starting

with the identity matrix as the GMM weighting matrix before re-optimizing. Our standard

errors are based on Shanken (1992). We also compute the J-statistic relevant to the null

hypothesis that the pricing errors are zero.

With regards to the risk factors ft+1, we select those that have been found to be most

relevant for understanding the cross-section of Treasury bond returns in addition to others

that have been proven to price the cross-section of other financial asset returns or explain

the time-series variation of Treasury risk premia. With regards to the former group of

risk factors, the first logical candidate is represented by the bond market portfolio excess

return computed as the weighted average of all Treasury issues returns in excess of the 1-

month general collateral (GC) repo rate, BMRt henceforth. This factor represents a zero-net

strategy that invests in all bonds in our sample financing the purchases at the risk-free rate.

The other candidate factors in the same group are (i) bond market illiquidity (Li et al.,

2009), ILLIQt (ii) an aggregate bond market probability of informed trading measure (Li

et al., 2009), PINt and (iii) the term spread, computed as the difference between the yields

on the 10 year T-note and the 3-month T-bill (Fama, 1984; Fama and Bliss, 1987), TERMt.

The other risk factors used in our empirical investigation include (i) bond market volatil-

ity (Ang et al., 2006; 2009; and Menkhoff et al., 2012), V OLt, (ii) bond market skewness

(Dittmar, 2002; Conrad et al., 2009; Chang et al., 2010 and Rafferty, 2011), SKEWt (iii)
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a funding illiquidity measure (Garleanu and Pedersen, 2011), FILLt (iv) the Fama-French

size and value factors, SMBt, HMLt respectively (v) the equity momentum factor (Carhart,

1997), UMDt and (vi) the digital put option on excess equity market returns (Krishna-

murthy, 2002), DUMMYDPt.

We compute the measure of bond market volatility and skewness as weighted-average

of standard deviations and skewness for each bond in our sample using daily data during

any given month. Similarly, the bond market illiquidity factor is computed as weighted-

average of daily quoted bid-ask spreads for each bond in our sample during the month. The

bond market PIN measure is computed as a weighted-average of individual PIN measures

computed for the 2-, 5- and 10-year benchmark notes using intraday data over any given

month (Easley et al., 2002; Li et al. 2009). For all of these measures the weights are

computed using both equal- and value-weighting schemes. In the latter case, the weights are

computed using the bond outstanding value at the end of each month.

We follow Garleanu and Pedersen (2011) and compute the funding illiquidity factor as

the difference between the 1-month LIBOR (uncollateralized rate) and the 1-month GC

repo rate (collateralized rate). We obtain data on the size and value factors and the US

momentum factor from Ken French’s website. Finally, we compute the digital put on excess

equity market return as in Krishamurthy (2002). More specifically, we construct a dummy

variable that is equal to 1 if, in any given month, the value of the equity market excess return

is lower than the negative of the equity market volatility and zero otherwise. The equity

market excess return data used in this computation is obtained from Ken French’s website.

3 Data and Summary Statistics

The data on US Treasury securities used in this article are obtained from two sources:

BrokerTec for the computation of the HFT intensity factor, and CRSP US Treasury database

for all other information pertaining to the cross-section of individual Treasury bonds in our
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sample.

BrokerTec is a major interdealer ECNs operating in the US Treasury secondary market

that emerged after 1999.13 Since then the trading of on-the-run Treasuries has substantially

(if not fully) migrated to electronic venues (Mizrach and Neely, 2009; Fleming and Mizrach,

2009).14 We compute the HFT intensity factor by applying the procedure detailed in Section

2.1 on data relative to the on-the-run 2-, 5- and 10- year T-notes from the BrokerTec limit

order book. The dataset contains the tick-by-tick observations of transactions, order sub-

missions and order cancellations. It also includes the time stamp of transactions and quotes,

the quantity entered and/or deleted, the side of the market and, in the case of a transaction,

an aggressor indicator.

CRSP U.S. Treasury Database is the second dataset we use in our empirical investigation.

It reports detailed information on every Treasury security that was outstanding since 1925.

For each security, CRSP reports a number of characteristics, including, among others, the

issue date, the final maturity, daily yields to maturity and end-of-the-day bid and ask prices.

CRSP also provides monthly readings of the dollar face value of each instrument.15 In our

empirical investigation, we focus on the cross-section of all Treasury notes and bonds with

remaining time to maturity longer than 1 year.16

13Previously most of the transactions in US Treasury securities were vioce-broking intermediated. The

data were disseminated by GovPX (see Fleming, 1997 and the references therein).
14According to Barclay et al. (2006), the electronic market shares for the 2-, 5- and 10-year bond are,

respectively, 75.2%, 83.5% and 84.5% during the period of January 2001 to November 2002. By the end of

2004, the majority of secondary interdealer trading occurred through ECNs with over 95% of the trading of

active issues. BrokerTec is more active in the trading of 2-, 3-, 5- and 10-year Treasuries, while eSpeed has

more active trading for the 30-year maturity.
15Since 1996, CRSP gathered this information from GovPX first and then directly from ICAP after the

latter acquired GovPX in 2008. Further details on the CSPR US Treasury database can be found online at

http://www.crsp.com/documentation/product/treasury/b.ackground.html
16We adopt this filter for various reasons. First, a minimum of 12 month of data is required to compute

the HFT intensity beta parameters. Second, the majority of the empirical asset pricing studies on the term

structure of interest rates in the US focuses on maturities longer than 1 year (see, among others, Cochrane

and Piazzesi, 2005; Thornton and Valente, 2012 and the references therein). Third, Treasury securities with

maturity shorter than 1 year may exhibit significant idiosycrasies that are not shared by similar securities

with longer-maturities (Duffee, 1996).
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The sample period investigated in this study spans between January 2nd, 2003 and

December 30th, 2011. The choice of this sample period is due to data availability and,

more importantly, to the fact that HFT was not widely adopted in the US Treasury market

before that period.17 Overall, during this sample period, the two datasets provide us with

more than 1 trillion observations relative to trades and limit orders for the three on-the-run

benchmarks (BrokerTec) and 300,574 bond-days (CRSP).

Figure 1 plots the daily level series HFTIt and its innovations, ĤFTI t. The level series,

which can be interpreted as the average share of trading and quoting activity due to HFT

for any given day, exhibits a marked upward trend. This pattern confirms the anecdotal

evidence that the adoption of HFT strategies in the US Treasury secondary market increased

substantially over the sample period. Furthermore, it is also worthwhile noting that the

value of HFTIt at the end of the sample is in close to 40 percent. This value is not very

different from the 45 percent estimated share of HFT in the US Treasury market reported in

recent financial press (Kite, 2010). The innovations of this level series are very volatile and

heteroskedastic with some spikes occurring at the beginning of the sample period. However,

they do not exhibit any peculiar trend or evident serial correlation.

Table 1 reports the descriptive statistics of the bond portfolios constructed as discussed

in Section 2.2. For all bonds in our sample, monthly returns are computed on the basis of

the mid-quote price, coupon payments and accrued interest during the month (Lin et al.,

2011).18 The baseline estimates are based on portfolio returns that are computed, in line with

much empirical literature (see, among others, Menkhoffet al., 2012) using an equal-weighting

scheme.19 20

17See Boni and Leach (2001); Mizrach and Neely (2009) and Fleming and Mizrach (2009) on the intro-

duction and development of electronic trading in the US Treasury market.
18We investigate the impact of transaction costs on portfolio returns in Section 5.1.
19However, in the robustness Section 5 we show that our results are confirmed qualitatively and quanti-

tatively if we portfolio returns are computed using value-weighting scheme.
20In the empirical estimations, for consistency, we use bond risk factors which are computed using the

same weighting scheme adopted for bond portfolio returns. Hence, the baseline results are carried out using
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Sorting bonds on the basis of the exposure to the HFT intensity factor generates a large

cross-sectional spread. The evidence reported in Table 1 is supportive of our conjecture that

bonds with the largest exposure to HFT intensity will also experience larger expected returns.

In fact, the strategy of investing in the portfolio comprising bonds with the largest HFT

intensity beta (P5) and shorting the portfolio comprising bonds with the lowest beta (P1)

yields about 10 percent per annum with an annualized Sharpe ratio that comfortably exceeds

1. The fact that the exposure to the HFT intensity factor generates a large return spread

in the cross-section of Treasury securities is further corroborated by the monotonicity test

statistic (Patton and Timmermann, 2010) that rejects the null hypothesis of no-monotonicity

with a p-value very close to zero. In addition we also find clear evidence that the bonds that

exhibit higher expected returns are also the ones with more negative HFT intensity beta,

i.e. that experience lower realized returns when HFT activity is unexpectedly high.

Figure 2, left panel, plots the cumulative excess returns from the bond strategy bench-

marked against the ones exhibited a simple buy-and-hold strategy for the overall bond mar-

ket. The satisfactory performance exhibited by our bond strategy is visually corroborated

when it is compared against the market benchmark. In fact, over the full sample period, the

cumulative excess returns from the bond strategy are always higher than those exhibited by

the benchmark. At the end of the sample, our bond strategy delivers a cumulative excess

return about 100 percentage points greater than that of a buy-and-hold strategy for the

overall bond market.21 This striking difference is also reflected in the annualized Sharpe

ratios of the two strategies, reported in Figure 2, right panel. In fact, our bond strategy

delivers a Sharpe ratio that is about twice larger than the one exhibited by the overall bond

market (that is about 0.6).

bond risk factors that are computed using a equal-weighting scheme. The same results carried out by using

returns and risk factors computed with a value-weighting scheme are reported in the robustness Section 5.
21The performance of our bond strategy compares favorably against any of the ones exhibited by con-

ventional US and international strategies over the same period of time. In fact, its Sharpe ratio is generally

larger than the ones exhibited by those strategies (see, Cenedese et al., 2013 and the references therein).
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Figure 3 plots the underlying characteristics of the extreme two portfolios introduced in

Table 1. The portfolio with the largest exposure to the HFT intensity factor (P5) contains

Treasury securities which exhibit a long time to maturity, high volatility and a relatively

high bid-ask spread. Vice versa, the portfolio with the smallest exposure against the HFT

intensity factor (P1) records a comparatively shorter time to maturity, lower volatility and

a bid-ask spread close, albeit slightly smaller, to the one recorded for the portfolio P5. Some

of these characteristics are broadly in line with the evidence reported in recent studies, but

in different contexts, suggesting that assets that are highly volatile and suffi ciently liquid are

the likely targets of conventional HFT strategies and, hence, being more exposed to HFT

activity (see, for example, Hendershott et al., 2010 and Brogaard, 2010).

For completeness, in Table 2 we also report a summary descriptive statistics of the factors

that are used in the subsequent sections. In panel A) we show the relevant statistics relative

to the factors computed bond market data. More specifically, we report the bond market

excess returns, the term spread and the innovations of the bond market volatility, skewness,

illiquidity and PIN factors as described in Section 2.3. The factor innovations are computed

as the residuals from an AR(1) model estimated using the monthly time series and they are

denoted with a hat.22 In Table 2 panel B), we show the remaining risk factors which are not

necessarily related to the cross-section of Treasury bond returns but they have been proven

to successful in pricing the cross-section of other asset returns.

4 Empirical Results

This section reports the asset pricing tests carried out to understand the properties of the

returns generated from the bond portfolio strategy. Put differently, we investigate whether

any conventional risk factors that are found to explain the cross-section of Treasury bond

22We also computed the innovations as the residuals from an AR(2) model. The results, not reported

to save space, are qualitatively and quantitatevely similar to the ones discussed in this and the subsequent

sections.

15



returns or any other risk factors that are successful in explaining the cross-section of other

financial asset returns also explains the returns of the cross-section of portfolios constructed

as in Section 2.2.

Table 3 reports the parameter estimates obtained by employing a conventional two-pass

FMB procedure. In particular, in all specifications (1)-(10) we consider the bond market

portfolio excess returns together with any of the remaining selected risk factors. The results

of this estimation suggest that none of the conventional bond and equity risk factors is

constistently able to price the cross-section of bond portfolio formed on the basis of the

exposure to the HFT intensity factor. This result is also confirmed when market prices of risk

are estimated using a two-step GMM methodology (Table 4). In fact, in the vast majority of

the cases the risk factors are statistically insignificant at the conventional statistical level and

in the few cases where they are significant, they are not consistent across the two different

methodologies. This suggests that the cross-section of portfolio returns reported in Table

1 cannot be easily explained as compensation for conventional sources of risk, including,

among others, illiquidity and volatility.23

It is worthwhile noting that our GMM estimates (as well as the FMB estimates in Table

3) record relatively high cross-sectional R2 and the null hypothesis of zero pricing errors is

not rejected at conventional level even in cases when parameter estimates are statistically

insignificant. This apparently counter-intuitive result can be rationalized in light of the

simulation evidence reported in Cenedese et al. (2013). They show that when the time-

series of portfolio return and the cross-section of assets are small, cross-sectional R2 tend to

be large and the J-statistics do not reject the null hypothesis even when portfolio returns

23We have also assessed the robustness of this conclusion to a different approach. More specifically, we have

computed the summary statistics of the P5-P1 returns when the portfolio are formed using the innovations

of the HFT intensity factor that are orthogonalized against the innovations of relevant risk factors, namely

volatility, liquidiy, skewness and PIN. The results, reported in Table A8 of the Internet Appendix, show

that even after orthogonalizing against the innovations of risk factors which may be strongly associated with

HFT, the returns from the bond strategy remains large, positive and statistically signficant at conventional

level.
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are truly uncorrelated with risk factors. However, they also show that the Shanken (1992)

corrected t-statistics are more reliable.24

The evidence reported in Tables 3 and 4 of this study is computed using a similar cross-

section of portfolios as the one reported in Cenedese et al. (2013). However, the time series of

returns is considerably shorter. Hence, it is likely that the biases recorded in Cenedese et al.

(2013) may be even more severe in our context. Nonetheless, even by taking that evidence

at face value, our results shows that none of the risk factors is able to exhibit corrected

t-statistics that are larger than 2 and consistently price the cross-section of portfolios across

the two different methodologies.

We complement the cross-sectional results from Tables 3 and 4 with a regression that

relates the P5-P1 return time-series to the time-series variation of all our risk factors simul-

taneously. We believe that this may be a rather powerful test since, unlike the cross-sectional

approach adopted in the previous tables, it allows for the joint consideration of all of the risk

factors over the full sample period.25 We run two regressions: one that includes the time-

series of the original risk factors, and another one which includes factor-mimicking portfolio

returns that replace the time series of the non-tradable risk factors. This dual analysis is

motivated by the fact that by converting non-tradable factors into portfolio returns allows us

to scrutinize the factor price of risk in a more natural way (see, Breeden et al., 1989; Ang et

al., 2006; Menkhoff et al., 2010 and the references therein). We construct factor mimicking

portfolios by projecting the innovations of the non-tradable factors onto the space of traded

returns of a set of base assets.26 In our case, we consider the CRSP Fama bond maturity

24In fact, in their experiment, the boundaries of the 5% rejection region implied by the bootstrap distrib-

ution of t-statistics do not exceed the interval [-2, 2]. Thus, they suggest that when t-statistics of estimated

factor prices are larger than 2, in absolute value, one can be relatively confident about the statistical signif-

icance of the candidate factors.
25The joint inclusion of all risk factors is not feasible in the cross-sectional asset pricing context because

of the small cross-section of portfolios (i.e. 5) considered in our empirical investigation.
26The non-tradable factors in our context are represented by V OLt, ILLQt, FILLt, SKEWt and PINt.
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portfolios as base assets and we estimate the following regression:

X̂t = a+
K∑
j=1

bBA · rxBA,jt + et, (3)

where X̂t denotes the non-tradable factor and rx
BA,j
t denote the excess returns from the

portfolio j = 1, ..., K comprised in the set of base assets. The returns from the factor-

mimicking portfolios are given by the mean of the traded portfolio
∑K

j=1 b̂BA · rx
BA,j
t . This

procedure yields factor-mimicking portfolios whose returns exhibit a correlation coeffi cient

with the non-tradable factors ranging between 0.26 and 0.66. These numbers are in line with

ones recorded in recent studies (see, for example, Adrian et al., 2013 and Cenedese et al.,

2013).27

The results of the time-series estimations are reported in Table 5. Overall, the evidence

broadly confirm the finding reported in the previous Tables 3 and 4 that most of the factors

have no explanatory power for the time-series of bond portfolio returns. The only exception

is represented by the Fama-French size factor that is found to be significant at 5 percent

level. However, and most importantly, Table 5 shows that in all of the cases the intercept,

or alpha, of the time-series regression of the returns on the P5-P1 portfolio on all of the risk

factors is positive and statistically significant, ranging between about 5.5 and 6 percent per

annum across the two specifications. This tell us that returns from our investment strategy

are not simply due to compensation for conventional sources of risk. In fact, even after

having accounted for various plausible sources of risk, a sizeable and unexplained average

return remains.28

27We also test the pricing ability of the factor-mimicking portfolios (Lewellen et al., 2010). For both

factor-mimicking portfolios the average excess returns are very close to, and statistically insignificantly

different from, the factor price of risk obtained for the cross-section of the same base assets. These results

are comforting since they imply that factors price themselves and the do not allow for arbitrage opportunities

(see also Menkhoff et al., 2010 p. 699).
28This evidence also suggests that there may be other drivers of such returns. We leave the analysis of

alternative potential explanations for future work.
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5 Robustness

This section checks the robustness of the baseline results reported in Section 4. More specifi-

cally, we test whether our results are sensitive to 1) the inclusion of transaction and financing

costs when computing the returns of the bond portfolio strategy, 2) the choice of different

formation and holding periods, 3) the inclusion of portfolio-specific factors when carrying out

the asset pricing tests, 4) the use of value-weighted returns and 5) a different methodology

used to account for potential biases in the asset pricing tests when liquidity factors are used.

Finally, in the spirit of Adrian et al. (2013), we also test whether a random noise HFT in-

tensity factor is able to spuriously replicate the cross-sectional results reported in this study.

We show that our baseline results are robust to all these issues. In addition, in light of the

evidence regarding HFT and macroeconomics announcements in the US Treasury market

(Jiang et al., 2013), we provide a refinement of our baseline results and investigate the re-

lationship between the returns from our bond portfolio and macroeconomic announcement

shocks.

5.1 Bond Strategy Returns and Transaction Costs

Our first robustness check aim at exploring the impact of transaction and financing costs

on the returns of the bond portfolio strategy. In fact, since the strategy requires that

several bonds are bought and short-sold at the end of the annual holding period, the explicit

consideration of transaction and financing costs may reduce or completely offset the returns

of the strategy. We assess the impact of such costs by including in the computation of returns

bid and ask prices and the repo costs of financing the long and short positions. Although bid-

ask spreads are relatively small in electronic markets during our sample period (Mizrach and

Neely, 2009; Fleming and Mizrach, 2009), the bond portfolio strategy discussed in Section

2.2 require financing at the repo rates. In fact, long positions are to be financed entering

in a repo transaction and to create a short position in a bond traders must execute a sale
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jointly with a reverse repo transaction (Krishnamurthy, 2002). In the latter case, traders

will deposit cash equal to the value of the bond with the counterpart and receiving bonds in

return. At maturity, when the short position is reversed the trader will buy back the bonds

and deliver them against the reverse-repo receiving back the cash plus the accrued repo.29

Hence, in the context of our strategy, traders will pay the repo rate for financing the long

positions but they will receive the reverse-repo rate for entering the reverse-repo transactions.

In line with Krishnamurthy (2002), we compute the profits (per unit of notional value) from

each bond considered in the long positions of our strategy as follows:[
P bt+k − P at − P at

(
ft,t+k

d

360

)]
, (4)

where P bt+k denotes the bond’s bid full price (i.e. including accrued interest and coupon

payments) recorded at the end of month t+ k, P at bond’s ask full price recorded at the end

of month t, ft,t+k denotes the annualized repo rate accruing between t and t + k and d are

the number of actual trading days occurring between t and t+ k. Similarly the profits (per

unit of notional value) from each bond considered in the short positions of our strategy as

computed as follows:

−
[
P bt+k − P at − P at

(
f̂t,t+k

d

360

)]
, (5)

where f̂t,t+k denotes the annualized reverse-repo rate. In our baseline computations k, in

line with the investment holding period, is equal 6 month. We define the difference between

the two repo rates, ft,t+k − f̂t,t+k, as the repo spread. In the robustness exercise we assume

that f̂t,t+k = ft,t+k (zero repo spread) or ft,t+k − f̂t,t+k = 25bps per annum.30

The results of this exercise are reported in Table 6. When the repo spread is set to zero,

29Krishnamurthy (2002, p. 469) points out that it is common that repo transactions require haircuts

to be left with the repo dealer as credit margin. For simplicity, and in line with Krishnamurthy (2002) we

assume that haircuts are 0%.
30In our calculations we also assume that the notional value invested in both long and short positions is

identical. It is worthwhile noting that it is also common that the notional values invested in the long and

short positions are chosen so that profits are invariant to an equal level change in the yield of each bond.

For the sake of simplicity, we do not explore this aspect in this robustness check.
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i.e. both repo and reverse-repo transaction are financed at the same 1-month GC repo rate,

the bond portfolio strategy is able to deliver a performance that is very similar to the one

reported in Table 1 over the same sample period. The inclusion of transaction costs does

not hinge on the annual return of the strategy which, at 10 percent per annum, is virtually

identical to the one reported in Table 1. However, the standard deviation of the strategy

returns is also higher, which leads to a smaller Sharpe ratio than the one reported in Table

1.

If we assume a non-zero repo spread by setting the reverse-repo rate equal to the repo

rate plus 25bps per annum, the returns from the strategy, reported in Table 5, are obviously

reduced but still positive, but statistically insignificant, over the full sample period. This

result shows that only very large transaction costs, in the form of large carry costs, are able

to reduce the economic value of the bond strategy. However, it is important to emphasize

that average carry costs of the order of 25bps per annum are unlikely to occur consistently for

all bonds in the short portfolios over the full sample period. In fact, Krishnamurthy (2002,

p. 474) show that repo spreads in the US Treasury market vary over time and they usually

tend to be smaller than the value of 25 bps per annum used in this exercise.31 Nonetheless, it

is worthwhile noting that even under these restrictive circumstances, the annualized Sharpe

ratio generated by the strategy is at par with, or slightly better than, the Sharpe ratios

exhibited by the overall bond market without the inclusion of transaction and financing

costs.32

As a further check, we also investigated whether the net-of-transaction-costs returns from

the strategy correlate with the menu of risk factors reported in Table 5. The results of this

31Also Duffi e (1996) show that the time variation in repo specialness can be very spiky and does not

persist over time.
32It is important to emphasize that once financing costs are included in the computation of the strategy

returns, the variable DUMMYDPt becomes significant at 5 percent level. This is not surprising, since

Krishnamurthy (2002) shows that i) the time-series dynamics of profits from convergence trade between

on-the-run and just-off-the-run bonds are associated with the dynamics of repo spreads and ii) the profits

from the strategy involve systematic risk that resembles an out-of-the-money put option.
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additional robustness check, reported in Table 7, confirm that even by taking into account

various sources of risk, the bond strategy is able to deliver positive alpha that now range

between 4.8 and 5.6 percent per annum. However, to echo the results reported in Table 6,

the alpha estimates are only statistically significant at 10 percent level when a zero repo

spread is assumed.

5.2 Different portfolio formation and holding periods

In Section 3 we implement our portfolio strategy by estimating the exposure (beta) to the

HFT intensity factor using daily data over the past 12 months (formation period) and com-

puting the portfolio returns assuming that the portfolio is rebalanced every 6 months (holding

period). Although our choice is made to provide reasonably accurate beta estimates over a

relatively limited sample period, it is natural to check whether any other plausible combi-

nation of formation and holding periods may affect our baseline results. In this robustness

check we compute portfolio returns, and the relative P5-P1 strategy returns, when either

the formation period or the holding period are increased. More specifically, in the first ex-

ercise, we leave the formation period unchanged but we lengthen the holding period to 12

months. Differently, in the second exercise, we leave the holding period constant and extend

the formation period to 18 months. We do not consider shortening either the formation

or the holding periods since these would result in more imprecise estimations of the factor

exposures and higher transaction costs due to a more frequent portfolio rebalancing. The

results of this robustness check are reported in Table 8. In both cases, we are able to con-

firm that lengthening either the formation or the holding periods does not affect our main

baseline results. In fact, Table 8 shows that sorting bonds on the basis of their exposure to

the HFT intensity factor still generate a large and significant cross-sectional spread. In fact,

in both panels, the average returns from the bond portfolio strategy P5-P1 are positive and

statistically significant and their annualized Sharpe ratios are still sizable.
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5.3 Portfolio-specific Factors

In Section 4 we showed that the return from the bond strategy are uncorrelated with a

large menu of sources of systematic risk in bond and equity markets. However, it may be

possible that bond- or portfolio-specific sources of risk (as opposed to systematic risk) may

be responsible for the performance of the strategy. We assess the results reported in Section

4 against this issue in the spirit of the framework adopted by Christophe et al. (2012).

More specifically, we augment the FMB second pass estimation with a set of factors that are

specific to each portfolio. We follow Ang et al. (2009) and Akbas et al. (2011), and focus

our attention to the role of portfolio-specific volatility and illiquidity. We also explore the

role of idiosyncratic skewness (Boyer et al., 2010). In particular, we extend the asset pricing

framework outlined in Section 2.3 by including in turn the volatility, illiquidity and skewness

of the individual five portfolios. We compute the portfolio-specific factors as weighted—

average of the variables of interest of the individual bonds included in each portfolio. If

portfolio-specific volatility, illiquidity or skewness factors are important in explaining the

cross-section of bond portfolio returns, they will exhibit statistical significance in our asset

pricing tests.

In order to meet the necessary identification conditions, we carry out the asset pric-

ing tests by adding to the bond market excess return both the systematic bond risk fac-

tors (V̂ OLt, ̂ILLIQt and ̂SKEW t) and the portfolio-specific factors (denoted as P̂ V OLit,

̂PILLIQit and ̂PSKEW i
t, respectively). The results of this robustness check, reported in

Table 9, confirm the baseline results discussed in Section 4, as none of the systematic or

portfolio-specific risk factors is statistically significant at conventional level.

5.4 Value-weighted Returns

As a further check we investigate the robustness of the baseline results to a different way

of computing portfolio returns. In Section 4, line with existing studies (see Menkhoff et al.,
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2012 and the references therein), we computed portfolio returns using an equal-weighting

scheme. In this subsection, we assess the baseline results by computing portfolio returns

using a value-weighting scheme where each bond return is weighted by the bond’s dollar

outstanding value of at the end of each month.

The results of this exercise are reported in Tables A1-A6 of the Internet Appendix. When

portfolios returns and aggregate factors are computed using a value-weighting scheme, the

evidence discussed in Sections 3 and 4 is quantitatively and qualitatively confirmed.

5.5 Liquidity Biases and Asset Pricing Tests

In this subsection, we assess the robustness of the results reported in Section 4 to potential

biases affecting the asset pricing tests when noisy liquidity measures are used as risk fac-

tors. We do this by correcting the standard errors of the FMB estimated parameters as in

Asparouhova et al. (2010, Section 4.4). The results of this robustness exercise computed

for both equal-weighted and value-weighted returns, are reported in Table A7 of the Inter-

net Appendix. They largely confirm and strengthen the asset pricing test results reported

Tables 3 and 4 since none of the conventional risk factors is consistently able to explain the

cross-section of bond portfolio returns.

5.6 Uninformative HFT Intensity Factor

The last robustness check we carry out aims to assessing whether the results reported in

Section 3 are simply due to chance. More specifically, in the spirit of Adrian et al. (2013),

we test whether a random noise HFT intensity factor is able to spuriously replicate the

cross-sectional results reported in this study. Specifically we simulate a HFT intensity factor

by randomly drawing from the distribution of the computed HFT intensity factor with

replacement. For each of the 10,000 replications we construct a time series of the HFT

intensity factor that has the same length of the one of the original factor. We then use those
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series to carry out the portfolio sorting exercise as described in Section 2.2. Since the factor

is randomly drawn, it should not be able to generate portfolios that exhibit a substantial

cross-sectional spread. Put differently, we should find that, portfolios constructed on the

basis of the exposures against the a random noise factor exhibit roughly the same returns

and, therefore a zero cross-sectional spread.

The results in Table A9 confirm our argument and show that sorting bonds into portfolios

on the basis of a noise HFT factor generates returns that are homogenous across portfolios

(around 0.4 percent per month). As a consequence the returns from the strategy P5-P1

are very close to zero and statistically insignificant. Moreover, the probability of randomly

achieving the P5-P1 average return as high as we report in Table 3 is only a mere 0.03 percent.

The null hypothesis of the test proposed by Patton and Timmermann (2010) is never rejected

with a p-value close to 50 percent, further validating the fact that the simulated noise factor

does not carry any pricing information. Taken together, the results reported in this sub-

section suggest that finding we discover and discuss in Sections 3 and 4 of the main text are

unlikely to be due to mere chance.

5.7 Bond Portfolio Returns and the Size of Macroeconomic News
Shocks

Finally, as a refinement of our baseline results, we compute the returns from the bond

portfolio strategy conditioning upon the size of macroeconomic news shocks. It is a stylized

empirical fact that macroeconomic variables drive the price of Treasury securities (e.g. Flem-

ing and Remolona 1997; 1999; Balduzzi et al., 2001; Andersen et al., 2003; 2007; Menkveld

et al., 2012 and Hoerdahl et al., 2013 and the references therein)33. Computers, with their

33There has been a vast literature examining the effect of macroeconomic news announcements in the US

Treasury markets. Fleming and Remolona (1997) and Andersen et al. (2003; 2007) find that the largest

price changes are mostly associated with macroeconomic news announcements in the Treasury spot and

futures markets. Balduzzi et al. (2001), Fleming and Remolona (1999), Green (2004) and Hoerdahl et al.

(2012) point out that the price discovery process of bond prices mainly occurs around major macroeconomic

news announcements and the same announcements are responsible for changes in risk premia across different
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speed and capacity to handle a large amount of information, are well positioned to execute

multiple actions in response to information shocks. Recent studies have documented that

HFT increases significantly after macroeconomic announcement news in various financial

markets (Scholtus et al., 2012; Jiang et al., 2013) and a larger HFT intensity is associated

with larger macroeconomic announcement shocks (Jiang et al., 2013). The predictability of

bond returns appear to accrue especially around news announcements. Therefore, a trading

strategy that takes position in bonds only around news announcements is able to deliver

extra returns to investors (Faust and Wright, 2012).

To check whether our baseline results are in line with the evidence reported in previ-

ous studies, we compute in the spirit of Pasquariello and Vega (2007) and Hoerdahl et al.

(2013) an aggregate binary indicator that is equal to one if the monthly cross-sectional

average of standardized announcement news shocks computed across 34 major macroeco-

nomic announcements34 is larger than its time-series average (or median), computed over

the full sample period, and zero otherwise. We then compute the returns from the bond

portfolio strategy over the two regimes, one characterized by contexts where macroeconomic

announcement shocks are larger than normal and the other one characterized by normal, or

less than normal, announcement shocks.

Figure 4 reports the annualized Sharpe ratios of the strategy in the two regimes. The

results reported in the left (right) panel of Figure 4 are computed by conditioning upon the

average (median) standardized announcement news shocks. A clear pattern arises. In fact,

it is visually evident that the profitability from the bond portfolio strategy increases during

the periods where announcement news shocks are larger than normal. During those times,

annualized Sharpe ratios are higher than the ones reported in Table 3 and close to a value

maturities. Menkveld et al. (2012) record similar findings for 30-year Treasury bond futures. Pasquariello

and Vega (2007) find that private information manifests on announcement days with larger belief dispersion.
34The data on macroeconomic news announcements and the survey of market participants are obtained

from Bloomberg. For further details on the construction of the data and the description of the various

macroeconomic announcement see Jiang et al. (2013).
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of 2. Vice versa, when returns are computed during the times when announcement news

shocks are normal, or less than normal, the annualized Sharpe ratios of the bond strategy

are substantially smaller. This suggests that the size of macroeconomic news shocks matters

in generating higher returns from the bond strategy. This is broadly in line with the results

reported in recent studies and complement nicely the evidence that HFT intensity is larger

when shocks affecting major macroeconomic variables are sizable and strategies that exploit

information around macroeconomic announcement times can be profitable. Our evidence is

also consistent with the argument that common systematic shocks may affect the profitability

of strategies based on the high-frequency seasonalities of asset returns (Keloharju et al., 2013)

and the fact that the asset pricing effect of HFT may be partially linked to information

(Skjeltorp et al., 2013).

6 Conclusions

This study investigates the effect of HFT on the cross-section of Treasury bond returns. We

argue that investors holding assets that are largely exposed to common HFT strategies might

face a higher risk in comparison with the ones holding assets which are less (or not) exposed

to HFT. As a consequence, those investors will demand a higher risk premium than the one

due to assets with smaller exposure to HFT. We construct a novel HFT intensity factor using

tick-by-tick data and we adopt a portfolio approach to address our main research question.

More specifically, we first sort bonds into portfolios according to exposure of bond returns to

innovations in the HFT intensity factor. Then we assess the profitability of a strategy that

goes long in the portfolio of bonds with the largest exposure to the HFT intensity factor and

short the one with the smallest.

Using data over the period January 2003 and December 2011, we find that this long-

short strategy is able to yield a US investor significant excess returns of about 10 percent

per annum. The returns of the bonds exhibiting the largest exposure to HFT intensity
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negatively correlate with innovation in the HFT intensity factor. Hence, those bonds provide

low returns when HFT activity is unexpectedly high and vice versa.

We also find that the returns from the strategy are not due to a mere compensation

for facing conventional sources of risk, including, among others, illiquidity and volatility

and they are not affected by transaction costs, comprising bid-ask spreads and the repo

market financing rates. Finally, we also find that the bond portfolio strategy performs better

during periods when macroeconomic announcement news shocks are larger than normal.

Importantly, the qualitative conclusions are robust to various issues, including among others,

the choice of different formation and holding periods, the inclusion of portfolio-specific factors

when carrying out the asset pricing tests and the use of different methodologies to account

for potential biases in the asset pricing tests when noisy liquidity factors. We also provide

simulation evidence that the our main results are not due to mere chance.

Overall, our findings confirm that HFT exerts important first order effects on expected

returns of Treasury bonds and these effects can generate a substantial economic value to

investors who adopt a strategy based upon the exposure to HFT risk.
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Table 1. Descriptive Statistics of Bond Portfolios

This table reports descriptive statistics for the monthly excess returns of bond portfolios
sorted according to their exposure (beta) to the innovations of the measure of HFT inten-
sity, ĤFTI t computed using daily data over the past 12 months. The holding period is six
months. Portfolio returns are computed using an equal-weighting (EW) scheme and they are
expressed in monthly percentage points. Portfolio 1 (P1) contains bonds with the smallest
HFT beta while Portfolio 5 (P5) contains bonds with the largest HFT beta. Mean, Stdev,
Skew and Kurt denotes the average, standard deviation, skewness and excess kurtosis of
the various portfolio returns, respectively. AC(1) denotes the first−order autocorrelation
coeffi cient of portfolio returns. Pre-ranking beta are the average beta estimates computed
across all individual bonds in each portfolios over the full sample period. SR denotes annu-
alized Sharpe ratios and MR is the p-value of the null-hypothesis of no monotonicity as in
Patton and Timmermann (2010). Values in parenthesis denote t−statistics of the average
portfolio returns computed using HAC standard errors as in Newey and West (1987). Values
in brackets denote the average t−statistics of the pre-ranking beta of each portfolio.

P1 P2 P3 P4 P5 P5−P1 MR
Mean −0.0809 0.0771 0.2334 0.4800 0.7899 0.8709 <0.01

(−0.5619) (0.5306) (1.3612) (2.4025) (2.5827) (3.2322)
Stdev 1.7203 1.4520 1.6092 1.9088 2.7092 2.5413
Skew −2.0734 −0.4883 −0.4022 0.4481 1.3097 1.0580
Kurt 12.3646 1.1194 0.3032 2.0702 3.7940 2.6981
AC(1) −0.0899 0.0254 0.0872 0.1227 0.2018 0.2035
Pre-ranking beta 0.2721 −0.3931 -0.8722 −1.4547 −2.2353

[0.6175] [−0.9823] [−2.0225] [−3.4299] [−4.3470]
SR −0.1630 0.1839 0.5025 0.8712 1.0101 1.1871



Table 2. Descriptive Statistics of Risk Factors

This table reports descriptive statistics for the risk factors constructed as discussed in Section
2.3. Panel A) comprises bond-specific risk factors: BMRt is the monthly excess returns of
the bond market portfolio, V̂ OLt, ̂ILLIQt, P̂ IN t, ̂SKEW t are the AR(1) innovations of
monthly bond volatility, illiquidity, PIN and skewness factors, respectively. TERMt denotes
the yield spread between the 10-year T-note and the 3-month T-bill. Panel B) reports
other risk factors used in the empirical analysis: F̂ ILLt denotes the AR(1) innovations
of the monthly series of the funding liquidity measure. SMBt, HMLt and UMDt are the
Fama−French size and value factors, and the US equity momentum factors, respectively.
The sample period is January 2003−December 2011. See also notes to Table 1.

Panel A) Bond Risk Factors

BMRt V̂ OLt ̂ILLIQt P̂ IN t T̂ERM t
̂SKEW t

Mean 0.2774 −0.0032 0.0006 0.0001 −0.0056 0.0218
Stdev 1.3054 0.0759 0.0974 0.0053 0.2051 0.5442
Skew 0.0269 1.2200 2.6373 0.5299 0.5924 0.1160
Kurt 0.9028 3.2063 14.1943 0.9530 1.7438 1.3310
AC(1) 0.0893 −0.2239 0.0953 0.0352 0.3484 −0.0968

Panel B) Other Risk Factors

F̂ ILLt SMBt HMLt UMDt

Mean 0.0060 0.2356 0.1107 −0.0183
Stdev 0.3081 2.4522 3.5754 5.2325
Skew 4.3610 0.8920 1.5902 −3.2224
Kurt 26.3465 2.3233 9.2550 20.0748
AC(1) −0.0882 -0.0697 0.2236 0.2669
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Table 5. Time Series Regressions

This table reports the time series regression coeffi cients of the excess return from the strategy
P5−P1 as in Table 1 on the various risk factors. Values in parentheses are t−statistics
computed using HAC standard errors as in Newey and West (1987). The sample period is
January 2003−December 2011. See also notes to Tables 1, 2 and 3.

non−tradable factors mimicking portfolios
Const 0.4620 0.5018

(2.1232) (2.8251)
BMRt 0.5349 0.5618

(1.8360) (1.5414)

V̂ OLt -0.9019 -0.1517
(-0.2667) (-0.0145)

̂ILLIQt −2.1095 −3.7272
(−0.4927) (−0.4420)

F̂ ILLt −1.4499 −1.9717
(−1.3083) (−1.1213)

̂SKEW t −0.4253 −1.5376
(−0.8576) (−0.8748)

P̂ IN t 18.7227 30.6878
(0.6893) (1.3963)

T̂ERM t −1.7246 −2.1318
(−1.2014) (−1.6086)

DUMMYDP t 1.7921 1.6120
(1.5391) (1.8394)

SMBt 0.1865 0.1906
(2.1472) (2.1843)

HMLt −0.2276 −0.1799
(−1.4447) (−1.8828)

UMDt −0.1619 −0.1147
(−1.6911) (−1.6778)

Adj R2 0.3401 0.3540



Table 6. Trading Strategy Returns and Transaction Costs

This table reports descriptive statistics for the P5−P1 strategy as in Table 1. The returns
net of transaction costs are computed using full bid and ask prices and they are adjusted for
the repo financing costs (as discussed in Section 5.1). We report the results for a repo spread
equal to zero and 25bp per annum. Portfolio returns are computed using an EW scheme.
The sample period is January 2003−December 2011. See also notes to Table 1.

repo spread =
no TC 0bp 25bp

Mean 0.8709 0.8420 0.6700
(3.2322) (1.9835) (1.5790)

Stdev 2.5413 3.4897 3.4905
Skew 1.0580 0.6694 0.6624
Kurt 2.6981 1.3518 1.3481
AC(1) 0.2035 0.1999 0.1997
SR 1.1871 0.8358 0.6650



Table 7. Time Series Regressions: Transaction Costs and Factor−mimicking
Portfolios

This table reports descriptive statistics for the P5−P1 strategy returns net of transaction
and financing costs as reported in Table 6. See also notes to Tables 4 and 5.

repo spread =
no TC 0 bps 25bps

Const 0.5018 0.4710 0.3999
(2.8251) (1.7382) (1.2151)

BMRt 0.5618 0.6975 0.6984
(1.5414) (1.6194) (1.6244)

V̂ OLt -0.1517 2.6092 2.7274
(-0.0145) (0.1870) (0.1954)

̂ILLIQt −3.7272 −0.2677 −0.3040
(−0.4420) (−0.0254) (−0.0289)

F̂ ILLt −1.9717 −2.9932 −2.9846
(−1.1213) (−1.2245) (−1.2213)

̂SKEW t −1.5376 −0.8674 −0.8730
(−0.8748) (−0.3691) (−0.3719)

P̂ IN t 30.6878 26.3360 26.5758
(1.3963) (0.8025) (0.8084)

T̂ERM t −2.1318 −2.4685 −2.4793
(−1.6086) (−1.1833) (−1.1920)

DUMMYDP t 1.6120 2.4264 2.4148
(1.8394) (2.2423) (2.2333)

SMBt 0.1906 0.1832 0.1813
(2.1843) (1.4749) (1.4598)

HMLt −0.1799 −0.2309 −0.2304
(−1.8828) (−1.5418) (−1.5394)

UMDt −0.1147 −0.1539 −0.1524
(−1.6778) (−1.4539) (−1.4426)

Adj R2 0.3540 0.3014 0.3007



Table 8. Portfolios Returns with Different Formation and Holding Periods

This table reports descriptive statistics for the monthly excess returns of bond portfolios
sorted according to their beta to the innovations of HFT intensity measure, ĤFTI t with
different formation and holding periods. See also notes to Table 1.

Panel A) 12 months of formation period, rebalanced every 12 months

P1 P2 P3 P4 P5 P5−P1 MR
Mean −0.0518 0.1611 0.3235 0.4728 0.7113 0.7631 <0.01

(−0.3255) (1.0362) (1.7845) (2.1550) (2.4095) (2.2682)
Stdev 1.5581 1.5231 1.7765 2.1494 2.8924 2.8228
Skew −1.3948 −0.6963 −0.1593 0.4408 1.1601 1.4806
Kurt 8.1298 1.4284 0.4342 1.5488 2.8603 3.8501
AC(1) −0.1107 0.0437 0.0674 0.1135 0.2123 0.2649
SR −0.1151 0.3663 0.6309 0.7619 0.8519 0.9364

Panel B) 18 months of formation period, rebalanced every 6 months

P1 P2 P3 P4 P5 P5-P1 MR
Mean 0.0443 0.2252 0.2634 0.5006 0.7012 0.6569 0.0330

(0.2416) (1.5166) (1.6262) (2.3208) (2.4293) (2.0466)
Stdev 1.7379 1.4089 1.5369 2.0464 2.7382 2.7137
Skew −0.9310 −0.3226 −0.1142 0.8391 1.4635 1.2614
Kurt 5.5702 0.5668 0.3575 1.7638 3.7246 3.2253
AC(1) −0.0847 −0.0415 0.0260 0.1994 0.2517 0.2046
SR 0.0882 0.5538 0.5938 0.8474 0.8871 0.8368



Table 9. Cross−sectional Regressions with Portfolio−specific Factors

This table reports the Fama−MacBeth (1973) factor premium for linear factor models.

P̂ V OLit, ̂PILLIQit, ̂PSKEW
i

t are portfolio-specific volatility, liquidity and skewness fac-
tors constructed as in Section 5.2. Values in parentheses are t−statistics computed as in
Shanken (1992). The sample period is January 2003−December 2011. See also notes to
Tables 1, 2 and 3.

(1) (2) (3)
BMRt −1.1428 −0.1492 0.2308

(−0.1144) (−0.0790) (0.0867)

V̂ OLt −0.0813
(−0.1476)

̂ILLIQt −0.4719
(−0.3850)

̂SKEW t −1.4913
(−0.1181)

P̂ V OL
i

t 9.4921
(0.2042)

̂PILLIQ
i

t 0.3451
(0.3314)

̂PSKEW
i

t 4.3498
(0.4681)

adj R2 0.3248 0.8414 0.6444



Figure 1. High Frequency Trading Intensity
20-days moving averages
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Figure 2.  Bond Strategy and Bond Market Returns
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Figure 3.  Bond Portfolio Characteristics
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Figure 4. Bond Portfolio Strategy and News Shocks
Annualized Sharpe Ratios
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Table A1. Descriptive Statistics of Bond Portfolios (VW scheme)

This table reports descriptive statistics for the monthly excess returns of bond portfolios
sorted according to their exposure (beta) to the innovations of the measure of HFT inten-
sity, ĤFTI t computed using daily data over the past 12 months. The holding period is six
months. Portfolio returns are computed using a value-weighting (VW) scheme and they are
expressed in monthly percentage points. The weights are computed using the outstanding
value of any bond at the end of each month. Portfolio 1 (P1) contains bonds with the
smallest HFT beta while Portfolio 5 (P5) contains bonds with the largest HFT beta. Mean,
Stdev, Skew and Kurt denotes the average, standard deviation, skewness and excess kurtosis
of the various portfolio returns, respectively. AC(1) denotes the first−order autocorrelation
coeffi cient of portfolio returns. Pre-ranking beta are the average beta estimates computed
across all individual bonds in each portfolios over the full sample period. SR denotes annu-
alized Sharpe ratios and MR is the p-value of the null-hypothesis of no monotonicity as in
Patton and Timmermann (2010). Values in parenthesis denote t−statistics of the average
portfolio returns computed using HAC standard errors as in Newey and West (1987). Values
in brackets denote the average t−statistics of the pre-ranking beta of each portfolio.

P1 P2 P3 P4 P5 P5−P1 MR
Mean −0.0723 0.0768 0.2443 0.4743 0.7756 0.8479 <0.01

(−0.5010) (0.5210) (1.3547) (2.3407) (2.5888) (3.2566)
Stdev 1.6948 1.4795 1.6528 1.9017 2.6699 2.4781
Skew −1.9526 −0.5603 −0.4236 0.4638 1.2775 0.9639
Kurt 10.6713 0.9910 0.3690 1.9502 3.8559 2.3683
AC(1) −0.0789 0.0271 0.1145 0.1419 0.2039 0.2012
SR −0.1477 0.1798 0.5121 0.8640 1.0063 1.1852



Table A2. Descriptive Statistics of Risk Factors (VW scheme)

This table reports descriptive statistics for the risk factors constructed as discussed in Sec-
tion 2.3 using a VW scheme. BMRt is the monthly excess returns of the bond market
portfolio, V̂ OLt, ̂ILLIQt, and ̂SKEW t are the AR(1) innovations of monthly aggregate
bond volatility, liquidity, and skewness measures, respectively. The sample period is Janu-
ary 2003−December 2011. See also notes to Tables 2 and A1.

BMRt V̂ OLt ̂ILLIQt P̂ IN t
̂SKEW t

Mean 0.2940 −0.0034 0.0003 0.0002 0.0240
Stdev 1.3311 0.0752 0.0947 0.0051 0.5827
Skew 0.0855 1.3066 2.4492 0.6582 0.4383
Kurt 0.5948 3.4999 13.3502 1.4000 1.0575
AC(1) 0.0834 −0.2135 0.1156 0.0186 −0.0831
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Table A5. Time Series Regressions (VW scheme)

This table reports the time series regression coeffi cients of the excess return of the strategy
P5−P1 as in Table A1 on the various risk factors. Portfolio returns and risk factors are
computed using a VW scheme. Values in parentheses are t-statistics computed using HAC
standard errors as in Newey andWest (1987). The sample period is January 2003−December
2011. See also notes to Table 4.

non-tradable factors mimicking portfolios
Const 0.4533 0.5364

(2.0849) (2.8528)
BMRt 0.5562 0.6154

(1.9144) (1.3149)

V̂ OLt −0.7972 4.0068
(−0.2384) (0.3598)

̂ILLIQt −2.4725 −2.8332
(−0.5429) (−0.2694)

F̂ ILLt −1.3770 −2.3144
(−1.3478) (−1.5026)

̂SKEW t −0.5597 −1.5046
(−1.2142) (−0.8958)

P̂ IN t 15.5191 17.1146
(0.5300) (0.6349)

T̂ERM t -1.7626 -2.0665
(-1.3549) (-1.7638)

DUMMYDP t 1.5707 1.4829
(1.4806) (1.9168)

SMBt 0.2037 0.1861
(2.3039) (2.1007)

HMLt −0.2299 −0.1858
(−1.4468) (−1.8822)

UMDt −0.1621 −0.1229
(−1.6713) (−1.7338)

Adj R2 0.3561 0.3582



Table A6. Cross-sectional Regressions with Portfolio−specific Factors (VW
scheme)

This table reports the Fama-MacBeth(1973) factor premium for linear factor models. The

test assets are the five bond portfolios reported in Table A1. P̂ V OLit, ̂PILLIQit, ̂PSKEW
i

t

are portfolio-specific volatility, liquidity and skewness factors constructed as in Section 5.2.
Portfolio returns and risk factors are computed using a VW scheme. Values in parentheses are
t-statistics computed as in Shanken (1992). The sample period is January 2003−December
2011. See also notes to Table 7.

(1) (2) (3)
BMRt -1.0851 0.4604 -0.0134

(-0.1065) (0.4476) (-0.0038)

V̂ OLt -0.0794
(-0.1690)

̂ILLIQt -0.3435
(-0.5479)

̂SKEW t 0.0138
0.0048

P̂ V OL
i

t 9.0355
(0.1959)

̂PILLIQ
i

t -0.0588
(-0.0553)

̂PSKEW
i

t 7.9809
(0.2730)

adj R2 0.2800 0.9881 0.0412
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Table A8. Bond Portfolio Strategy and Orthogonalized ĤFTI t

This table reports descriptive statistics for the P5−P1 strategy returns computed as in Table
1. non-orth denotes the returns from the strategy where ĤFTI t are not orthogonalized.
orth(X̂t) are P5−P1 strategy returns computed by investing in the portfolio of bonds with
the largest negative ĤFTI t beta orthogonalized against the innovation of the variable Xt,
denoted as X̂t, and shorting the portfolio of bonds with the largest positive/smallest negative
ĤFTI t beta orthogonalized against X̂t. See also notes to Table 1.

non-orth orth(V̂ OLt) orth(L̂IQt) orth( ̂SKEW t) orth(P̂ INt)
Mean 0.8709 0.7148 0.4708 0.9203 0.7096

(3.2322) (2.4830) (1.7563) (3.7640) (2.9419)
Stdev 2.5413 2.5358 2.3334 2.5184 2.2707
Skew 1.0580 1.2360 1.5684 0.6557 1.1251
Kurt 2.6981 3.1352 4.4451 2.3651 3.6149
AC(1) 0.2035 0.2174 0.1616 0.1429 0.1701
SR 1.1871 0.9764 0.6990 1.2659 1.0825
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Ĥ
F
T
I
t
w
it
h
re
pl
ac
em
en
t.
E
ac
h
si
m
ul
at
ed
se
ri
es
ha
s
th
e
sa
m
e
le
ng
th
of
th
e
on
e
of
th
e
or
ig
in
al
fa
ct
or
.
T
he
va
ri
ou
s

st
at
is
ic
s
of
in
te
re
st
s
ar
e
ob
ta
in
ed
fr
om

th
ei
r
em
pi
ri
ca
l
di
st
ri
bu
ti
on
s
ca
lc
ul
at
ed
ov
er
10
,0
00
re
pl
ic
at
io
ns
.

P
1

P
2

P
3

P
4

P
5

P
5−
P
1

M
R

M
ea
n

0.
44
49

0.
44
16

0.
45
22

0.
44
53

0.
44
86

0.
00
37

0.
50
05

95
%
in
te
rv
al

[0
.4
41
9,
0.
44
80
]
[0
.4
40
3,
0.
44
29
]
[0
.4
51
4,
0.
45
30
]
[0
.4
43
9,
0.
44
68
]
[0
.4
45
6,
0.
44
17
]
[−
0.
00
23
,0
.0
09
7]

[0
.4
94
3,
0.
50
68
]

St
de
v

0.
15
90

0.
06
57

0.
04
17

0.
07
54

0.
15
95

0.
31
23

Sk
ew

0.
09
71

0.
05
94

0.
22
89

−
0.
02
67

0.
03
03

−
0.
03
51

K
ur
t

−
0.
27
83

−
0.
23
09

0.
25
18

−
0.
19
06

−
0.
33
59

−
0.
30
61

A
C
(1
)

−
0.
00
79

0.
00
22

−
0.
00
55

−
0.
00
31

−
0.
00
87

−
0.
00
83


